
APPLICATION OF THE METHOD OF AGGREGATES TO THE SOLUTION 

OF MIXED PROBL~-IS IN ELASTICITY THEORY 

L. A. Nazarov b'OC 539.3 

The method of aggregates proposed in [i] is as a rule used to solve dynamic problems in 
elasticity theory. The essence of the method consists of the following. Displacements are 
expanded in a series in the variable x i (one series, or two, when boundary conditions are 
not given on the surfaces x i = const), and the initial system of dynamical equations is re- 
duced to a series of one-dimensional wave equations, which are solved numerically, in this 
case, the boundary conditions and the "adhesive" conditions between layers (if these exist) 
must be uniform. 

in this paper, a method is proposed which makes it possible to solve mixed problems. 

Lame's equations in a coordinate system which admits separation of variables are 

~AV + (~ -~- ~ ) v v . V  pV, V = (,,, w) ( i )  

(for definiteness, the two-dimensional case is chosen). Here u, w are displacements in xl, 
xi; X, ~ are Lame's parameters; and p is the density. Let the equilibrium conditions be 
given on the coordinate surfaces x 2 = const: 

o,~ = ~ ,  o.~ = ~,~ ( 2 )  

the overbar denotes values along the other side of the boundary), ({oij } is the stress tensor; 

and let 

o(u ,  u ,  u,, Tv', ,~j)  = O, "c(u, u ,  w, ~'~,. '~u) = O. 

The choice of functions for o, which make sense physically is not large: 

( 3 )  

i. Strict contact 

2. Contact with discontinuity in the displacements 

or dilatation 

o = o2~  - -  D ( u  - -  ~ ) ,  "r = (~,2 - -  T ( u  - -  u ,  ~2~), 

where the functions P, T, and D are in general nonlinear [2]. 

3. Free surfaces 

(J = (J22~ "17 ---  0 "12 .  

Let us choose the simplest case, which is a combination of i and 3: on part of the 
surface X (x 2 = x~ = const), the boundary is strictly locked, while on the remainder, i, it 
is free. We introduce discretization of x 2 with step size h and write these conditions and 
~z), taking into account Hooke's law, in the form 
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w -- u,. Ou - -$ .  -- u3: - 0"~ ~---V-+;k~--~ = ~ + k T x ,  w=~ for x ~ X ;  

( - - )  Ooy ) II, -- It u -- u. 05 

w -- w. ~ Oi~ __ - uL, -- 17 o-u 
O ~ ' q -  Oxl--O~--'7~t + i-~xi = 0  for x I ~ X ;  

u .  = u (x,,  x2 - -  h), u-. = 7z ( x .  x~ + h), ~ = )~ + 2~, 

from which we have, for x I �9 X 

while for x I e 

u = L-t ,=bu ,  + b~ ,  + h . ( - b - - b )  ~ 

u ' = = w = a w , + a w .  + h ~ - k  ou + = Ox 1' 

b=~l(~  ~t), b -= t - -b ,  a=~ / (Y+~) ,  a = ~ - - a ,  

kz4) 

Let 

OIA 

u=u,+h.~ ~,=w,+~h~ b~z~' 6 = kia, = 

(4') 

N N 

~ 0  ~ = 0  

({Sn, Cn} is a complete system of functions). 

For a Cartesian coordinate system (x I = x, x 2 = y) 

{S.(x), C. (x ) }  = (sin k,,x, cos k~x},  k~ = ~n/A 

(x = h is a ficticious boundary [i]). 

For a cylindrical coordinate system (x I = %, x 2 = r, A = z) 

�9 {S~(O), C~(O)} = {s in  nO, cos nO} 

(X 1 = r, x 2 = z), Sn(r) = Jlkgnr), Unkr) = d0kKnr)" r, ' (in this case, k 0 are roots of the equation 
Jl(knA) ' = 0, and J0 and J1 are Bessel functions). 
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cooraznate For a spherical ~" system (x l 

S. (~) = P~ (cos +), 
[~0 q ten' P6 a r e  L e g e n d r e  p o l y n o m i a l s ) .  

A 

We now a p p l y  t h e  o p e r a t i o n  S ""Sn(Xt)dxI 

A 

= ~ ,  x 2 = R ,  A = v )  

c~ (+) = P~ (cos ~) 

to the first relations in (4) and (4~), and the 

~...C~(xOdx I to the second reYations in (4) and (4'), using the operation necessary weight 
0 

functions in the operations. After transformation, we obtain a system of linear equations 
for U n, W n, O n , ~n: 

N 

U TM = U~ - -  p ~ W  '~ + -b 7~ (Q~ + 2 p . W " ) A m n ,  
n=O 

N 
w "  = w r  - @ m u  '~ + a E (r~ + ~p.U")~.,~, 

~Z~O 
N 

U ~ --,~ W.~ _ 2p,~W~)Amn, - -  - U .  + p ~  b E ( Q : +  
n - - o  

N 

W m -= [7-~ m + -6pm-('] r n -  (7 E ( T :  -b cp~U )Bran, 
n ~ O  

- -  |%-V.-- . . ,  c = ( 5 + g ,  m = : O  . . . . .  N ,  p , , = h k . ,  O : ~ = u 2 - u ' 2 ,  7 ~ =  '~ w" 

A a 
A=n = i' g (x~) S~ (xl) S,, (x~) dx> Bm,~ = i" g (xa) Cm (xl) Cn (xx) dx 1, 

0 0 

{'lO 091 ~ X '  

(6) 

The limiting cases are Amn = Bmn = 0 (a free surface); and Amn = Bmn = 6mn (strict con- 

~ac~). The solution to ~oj does not present any difficulties. 

if condition ~3) ~ ~ is nonlinear, then to determine the displacement at x 2 = x~, it is 
necessary to iterate at each time step. 

We examine two cases using the proposed approach. 

!" Qualitative Monitoring of the State of Contact between Blocks. it has been shown in 
a number of works (for example, [3]) that the contact of two blocks of rock does not take 
place along the entire surface, but only over an insignificant part of the surface. Then, 
with increasing normal compressive stress On, the contact area increases. (The contact area 
is defined as the total area of the "spots' of contact.) Recall that the tangential contact 
strength is T, = iOnltan~, + t 0 (4, is the "angle of internal friction," T o is the adhesion), 

and when ~, is exceeded, dynamic phenomena (the release of stored energy) become ]possible. 
Using this information, it is possible to judge the tendencies in interblock contact behavior 
based on the character of the change in On, and, if observations are made at some cracks, to 
judge the behavior of sections of the block as a whole. 

Thus, let a pulsed point source of the expansion-contraction type be located in the 
neighborhood of a crack, the margins of which are in contact along some segment (Fig. i). 
Unidirectional displacement gauges are attached along both sides of the crack at a vertical 
distance h from the crack. The source generates a wave whose wavelength A is much greater 
than the dimension i of the contact segment. We considered just such a case above. 

Computational results are shown in Fig. 2. ~e displacement at the upper observation 
point is given by solid curves; that at the lower point by dashed curves. The maximum ampli- 
tude of the vertical displacement in a square wave at the point (0, 0) was chosen as unity. 
Curves 1-3 correspond to r = L/~ = ~, i0, 2 (~ = ~ is the case of strict contact). The signal 
radiating from the source is one period of a sinusoid. Here it is plainly evident that with 
decreasing contact area, the amplitude of the first arrival grows at point i, but drops at 
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point 2 (Fig. i). This difference is significantly reduced with the passage of time. The 
amplitude at the upper point exceeds unity, due to the presence of free seNnents (it is known 
that the displacement is doubled at a free surface). 

Note that the observation point must be situated at a distance less than A from the line 
of contact, in the opposite case, all useful information is lost as a consequence of the 
superposition of waves. The proposed scheme is easily implemented in practice and makes it 
possible to qualitatively monitor the ongoing state of a crack. The ratio of the amplitudes 
of the first arrivals at point 1 and 2 serves as an informative parameter. 

To obtain quantitative estimates, it is necessary to experimentally investigate the con- 
nection between normal forces and the contact area (of the Hertz problem nype)' ". 

2. Method for SignalAmplificationfrom an Oscillator Source. it is known that during 
the operation of a surface oscillatory source, longitudinal waves carry only 7 to 15% of the 
energy [4]. We examine one of the methods for amplifying the signal in the longitudinal 
direction: Part of the surface around the source is artificially suppressed in the vertical 
direction. Without going into technical details, we write the boundary conditions at the 
surface x 2 = 0 ~zg.~" 3): 

-:(t) z~ro, 
= / v - = O  F ~ < X l ~ P  1, 

{JYY X l ~ 1" 1, 
T=0, 

Here F(t) = sin meste); s is the Heaviside function; w = 2~f; f is the frequency; r o and r l 
are the dimensions of the source and of the suppressed region. The problem is solved in a 
cylindrical coordinate system. 

in accordance with the approach outlined above, we can immediately write out the rela- 
tions 

N 
'I" W ~ rn U TM ,m �9 ,~i = W o ,  = 5 ,  --prow '~, r e = O ,  . . . .  N ,  

i=O 

= 2 C T~, (l  + ~p~)6~--6p~ ~,  
N 

w~: = w~: + ~p~C~: + O~ - w~.C'~o - E ( w ~, + ~p~U~.) c . , .  
i = l  

A 

Cmi = .f g (xO X~Jo (k~xD ]o (k~xO d x .  
0 

Qm = 2F (t) ]~ (kmro)/( kr.g~ (kmA) ), 

1t0 f~  r o < x l ~ q ,  
g (Xl) = for 0 ~ x~ ~ ro, r t <:~ xl ."  

The calculations were done for the following values of the dimensionless parameters: 
q = 0.033, y = 0.3 (q = fr0/V p, ~ = Vs/V p, Vp and V s are the longitudinal and transverse 
wave velocltles). 

Figure 3 shows cyllndrical-coordinate plots of the radial and tangential displacement 
velocities (the maximum value of 6 R at $ = 0, where $ = rl/r 0 - i was chosen as unity) 6 R = u x 

sin e + * cos e, 6@ = 6 e = 6 cos e - w sin e for $ = 0, 4, 9 ~curves ~ i-3). Analysis of these 

plots allows us to conclude that suppression of the surface has a positive effect. Depending 
on the values of ~, q, and ~, the &mplitude of the radial velocities can be increased by 30% 
or more. With decreasing ~, focussing in the vertical direction is improved, and the 68 com- 
ponent is strongly suppressed. 

in conclusion, note that the proposed method is not usefui for studying "fine" effects, 
as in the analysis of stress concentrations at singular points (for example, x 2 = r 0 in 
problem 2; here the factorization method is used [5]). This is because it is necessary to 
select a finite upper limit for the summations in (5). The method is effective for making 
global estimates of the parameters of the process. 
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EFFECT OF A PLANE ACOUSTIC PRESSD~E WAVE ON A REINFORCED 

CYLINDRICAL SHELL 

N. i. Aieksandrova and i. V. Efimova UDC 539.3 

An investigation of the strength of reinforced shells against pulsed loads is required 
to determine the limits of applicability of various designs in mechanical engineering and 
construction. This has resulted in a large number of publications on the development of 
theory and calculationai method for ribbed shells (see review [i]). The effect of reinforce- 
ment ribs on the stress-strain state and the kinematic fields of cylindrical shells immersed 
in a fluid has been examined for transient excitation [2-4]. Special attention has been paid 
[2] to membrane stresses in the central cross section under the action of a plane wave. Ra- 
dial displacements have been investigated [3] for axissnnmetrie loading in the center of the 
shell, interaction of the fluid with the shell has been studied [4] according to the hypoth- 
esis of plane reflection. The behavior of flexure stresses on reinforced shells has hardly 
been studied. 

Here we estimate the flexure and membrane stresses and the displacements of periodically 
reinforced shells during the transverse action of a plane translational pressure wave. A 
numerical solution of the problem is obtained by using a Fourier expansion in the angular 
coordinate and by using finite differences in the other coordinates. Numerical and analytical 
results are compared. The dynamic-response factor and the initial time at which these results 
coincide are determined. 

i. The transient effect of a plane translational pressure wave is investigated for an 
infinitely long, thin, elastic cylindrical shell, which is periodically reinforced by ribs and 
immersed in an ideal elastic fluid. The shell is either empty or filled with the same fluid 
as surrounds it. The front of the incoming wave is parallel to the axis of the shell. The 
movement of the shell is described by linear equations of the Kirchhoff-Love theory; the 
excitations in the fluid are described by the wave equation for the velocity potential. The 
equations of motion for the m-th mode of oscillations along the angle @ have the form 

O~um O'Um i - -  v .~" ~ + v m OVm v 8win 
7 Ot - - T ~  6x 2 2 R ~um + 2 R Ox + R a x '  

O~vm l _ v O2v m 

5 e ~ 02~n 

i 02win V OUm 
c 2 Ot 2 

I i -v  m Ourn m ~ m 
2 R Oz R 2 V . ~ - - - ~ W m +  

m 2 m s a%~] 

m w m ~2 ~04wm 2m 2 02win 
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